
PalCom External Report no 57 Deliverable 43 (2.6.2) page 1

IST-002057 PalCom

Palpable Computing:
A new perspective on
Ambient Computing

Deliverable 43 (2.6.2)
End-User Composition: Software

support for assemblies

Due date of deliverable: m 37
Actual submission date: m 37

Start date of project: 01.01.04

Duration: 4 years

Lund University (LU)

 Revision: 1.1

Project co-funded by the European Commission within the Sixth Framework Programme

(2002-2006)
Dissemination Level

PU Public PU
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission

Services)

CO Confidential, only for members of the consortium (including the Commission
Services)

Integrated Project

Information Society Technologies

PalCom External Report no 57 Deliverable 43 (2.6.2) page 2

1 Table of Contents
1 Table of Contents... 2
2 Executive Summary... 3

2.1 Contributing authors... 3
3 Introduction... 4
4 Background.. 5

4.1 Devices, services, and discovery .. 5
4.2 Service descriptions ... 5
4.3 Service categories .. 5
4.4 Simple and advanced devices ... 6
4.5 End-user categories and assembly editing... 7
4.6 Scenarios.. 7

5 The Developer’s Browser .. 8
5.1 Device and Service Browsing... 8
5.2 Remote interaction with a service... 9
5.3 Assembly editing ... 10
5.4 Synthesized services... 11
5.5 Initial support for bindings ... 12
5.6 Experiments with versioning and epidemic updates.................................... 13

6 Supporting middleware software...15
6.1 Service Framework .. 15
6.2 Initial Resource Manager ... 15
6.3 The Assembly Manager.. 16

6.3.1 Representation of assemblies.. 16
6.3.2 Loading and running assemblies... 16

6.4 Discoverable Component Manager... 17
6.5 Simulated devices .. 17

7 Interaction with other workpackages ..18
8 Conclusion...19
9 References ...20
10 Appendix. Abstract grammar for assemblies ..21

PalCom External Report no 57 Deliverable 43 (2.6.2) page 3

2 Executive Summary
WP6, on End User Composition, covers the aspects of the PalCom architecture and
infrastructure where end users can put together services and devices in new, ad hoc,
ways using assemblies. The focus is on end user interaction with the mechanisms for
discovery and composition/decomposition of services and assemblies.

This deliverable focuses on the software developed to support end-user composition,
and which is part of the PalCom Toolbox infrastructure:

• Developer’s Browser. We have developed an interactive tool, the Developer’s
Browser, that supports end-user assembly development. It allows the user to
browse discovered devices and services, to interact with services remotely,
and to construct and to run assemblies. This browser is a high-end browser,
aimed at advanced end-users as well as PalCom developers. It is implemented
in Java as an Eclipse plugin, and is designed to run on a general-purpose
computer with screen, mouse and keyboard.

• Supporting Middleware. To support the browser and other application-level
software, middleware software has been developed in Pal-J (the restricted
version of Java that runs on both JVM and PalVM). This middleware is useful
for any PalCom device, not just browser devices. In particular, we have
developed a Service Framework, an initial Resource Manager, an Assembly
Manager, a Discoverable Component Manager, and support for Simulated
Devices.

In addition, we discuss interaction with other workpackages, experiments we have
made with these software tools, and how the work relates to the PalCom challenges.

2.1 Contributing authors
The following people have contributed to this deliverable:

• Görel Hedin, Lund University
• Boris Magnusson, Lund University
• David Svensson, Lund University
• Sven Robertz, Lund University

We have also benefited from constructive comments from the following people:
• Michael Christensen, Aarhus University
• Simon B. Larsen, Aarhus University
• Reiner Schmid, Siemens

PalCom External Report no 57 Deliverable 43 (2.6.2) page 4

3 Introduction
WP6, on End User Composition, covers the aspects of the PalCom architecture and
infrastructure where end users can put together services and devices in new, ad hoc,
ways. The focus is on end user interaction with the mechanisms for discovery and
composition/decomposition of services and assemblies.

WP6 provides a link between programming level mechanisms, such as components
and communication, and application prototypes and scenarios. The concepts
developed in the project for services, components, and assemblies are made accessible
to the end user in order to discover, compose/decompose and adjust palpable systems
for specific end-user needs and deployment.

The previous deliverable from WP6, [Del25], characterizes the main concepts in
PalCom, like service, connection, and assembly, from an end-user perspective. It
outlines how end-users can compose services using assemblies, and characterizes
typical categories of end users and typical categories of devices. For further treatment
of the underlying ideas of assemblies and service browsers, see [SvMaHe05,
SvMaHe06, Sv06].

The present deliverable focuses on the software developed within WP6: an end-user
browser and supporting middleware, belonging to the application layer and the
middleware layer of the PalCom ToolBox infrastructure. See [Del39] from WP2 for an
overview of the infrastructure.

The rest of this deliverable is structured as follows: Section 4 provides a background
discussion of the PalCom concepts that are of particular importance in this
deliverable. Section 5 describes the Developer’s Browser that has been implemented.
Section 6 describes the middleware software that has been implemented to support
the software at the application level, in particular the browser. Section 7 discusses the
relation to other work packages. Section 8 concludes the deliverable, and gives a brief
discussion of how the PalCom challenges are addressed by this work.

PalCom External Report no 57 Deliverable 43 (2.6.2) page 5

4 Background
To give a brief background for the continued discussion, we review a number of the
key concepts of relevance to end users, all more thoroughly discussed in [Del25,
Del39, Del41]. The concepts are described here according to their current
implementation. For this reason, there may be some minor differences when
comparing with other deliverables: sometimes the open architecture description is
ahead of the implementation, and sometimes it is the other way around, reflecting the
iterative development of the concepts.

4.1 Devices, services, and discovery
A device is a computerized hardware node such as a laptop, digital camera, gps,
biosensor, etc.. A device typically has a number of services, often related to the
hardware on the device. For example, a digital camera can have a service for remote
control of the camera, with messages for taking photo and sending picture. Through
these services it is possible to interact with the camera over a network. There is a
PalCom discovery protocol that allows devices and their services to be discovered
from other devices. There is a basic PalCom service protocol that allows connections
to be set up between services and the services to communicate by message sending.

4.2 Service descriptions
Each service has a service description that describes its interface using an XML
format. The description contains information about a connection type, that identifies
the structure of its interface. In all our examples in this deliverable, we use the type
control, which is a general connection type allowing a set of different messages to be
sent and received. We have also experimented with other connection types, e.g., for
streamed data.

A control service can either be a control provider, in which case the service
description contains a description of which messages it can send and receive, or a
control customer, in which case it is constructed to be connected to a specific control
provider. Assembly Scripts and Remote Views, discussed below, are both control
customers, whereas normal services on devices, like cameras, are control providers.

To combine services, an assembly is created that defines which services are combined
and how. The assembly can contain a script with some logic of its own, and which
serves as a control customer that can be connected to other control providers. The
assembly can also contain descriptions of one or more synthesized services that serve
as control providers, giving the assembly one or more external interfaces, allowing it
to be used in other assemblies.

4.3 Service categories
There are different categories of services, and of particular interest in this deliverable
are the following

• Indigenous service, i.e., services which are bound to the underlying hardware
platform in such a way that it can only run on this particular device.1 For
example, the services of a camera will typically be indigenous. Indigenous
services typically run automatically when the device is turned on.

1 In [Del25] we used the term native service. The term indigenous is now part of the
open architecture.

PalCom External Report no 57 Deliverable 43 (2.6.2) page 6

• Discoverable component, i.e., a general-purpose component that offers a
service and therefore is discoverable (in contrast to other components that may
be part of a device implementation, but which do not offer services). A
discoverable component is general-purpose and is not tied to any specific
device (it is not indigenous). It can therefore be copied and in some cases
migrated from one device to another. Discoverable components can be
instantiated to running services, at which point connections to them can be set
up. The execution of a discoverable component can be started and stopped. If
platform requirements are met, discoverable components can be copied to
other devices, and they might be migrateable, in which case their running
instances can be migrated to other devices.2

• An Assembly is an entity that uses other services and has a script for
coordinating the interaction with these services. The assembly script serves as
a control customer service. The assembly may also offer zero or more
synthesized services which are control providers. They allow the assembly
itself to be assembled by other assemblies. An assembly also plays the role of
a discoverable component: it can be copied to another device, instantiated,
started, and stopped. An assembly is also migrateable: a running instance can
be migrated to another device.

4.4 Simple and advanced devices
Depending on need and hardware platform capabilities, devices may differ in what
parts of the PalCom infrastructure they support, and thereby in what kind of services
they can host. See Figure 3 in [Del39] for an overview of the PalCom infrastructure.
Very simple devices host only indigenous services. More advanced devices can host
discoverable components, assemblies, and/or interactive browsers.

• To host indigenous services, the device needs only to support the basic
PalCom discovery and communication protocol.

• To host discoverable components, the device needs to provide a JVM or

PalVM execution platform for running the component, and a Discoverable
Component Manager (see later in this deliverable) which is a Service Manager
[Del39] that can load, start and stop Discoverable Components.

• To host assemblies, the device needs an Assembly Manager and a Resource

Manager (described later in this deliverable) that can store, load, and interpret
assembly descriptions.

• To host a browser, the device needs interactive capabilities, and will typically

be a laptop or a handheld computer. Simple browsers allow the user to browse
devices and services on the network, and to interact with them in a simple
way. More advanced browsers allow the user to interact remotely with
services and to construct and run assemblies. The Developer’s Browser,
described in this deliverable, is an example of such an advanced browser.

2 The term discoverable component was introduced in [Del25] but is not (yet) part of
the PalCom Open Architecture [Del39]. The implementation currently uses the term
software component. We are not entirely satisfied with either of these terms, but to
avoid introducing an additional term before this concept has converged at the
architectural level, we keep with the one introduced in [Del25].

PalCom External Report no 57 Deliverable 43 (2.6.2) page 7

4.5 End-user categories and assembly editing
An end-user is a person that makes use of PalCom devices and services. As discussed
in more detail in [Del25] we envision different categories of end users, ranging from
naïve end users that only operate turn-key PalCom systems, over intermediate users
that can adjust existing PalCom assemblies, to advanced end users that construct new
PalCom applications by assembling existing devices and services, and by scripting
their interaction. None of these end user categories need programming skills.

Browsers are used for constructing or adjusting assemblies. Depending on the skills
and needs of the end users, different kinds of browsers are relevant:

• Handheld browsers. These browsers are suitable for doing simple assembly
construction and adjustments, but the limited screen size may make more
advanced development of assemblies difficult. We have developed the MUI
browser [Del25, SvMaHe05], as an example of such a browser.

• Laptop browsers. With the larger screen and better input capabilities
(keyboard and mouse), laptops can host browsers with more advanced
assembly editing functionality. The Developer’s Browser and the Visual
Browser are examples of laptop browsers.

The Developer’s Browser is described in this deliverable. It is implemented as an
Eclipse plugin [Eclipse], and is focused on supporting assembly developers rather
than ordinary end users that simply need to adjust or inspect an assembly. Although
the Developer’s Browser can be used by very skilled end users, it is primarily
intended for developers.

There is also a need for more intuitive browsers that are easy to use for a larger
category of end users who mainly adjust or inspect assemblies, rather than construct
new ones. For this purpose, a Visual Browser is under development as well, and a
prototype of this browser has been used in some of the scenario prototypes [Del44],
see also the screenshot in Fig 9 in [Del39].

Both the Developer’s Browser and the Visual Browser focus on manual assembly
construction, i.e., the user explicitly identifies particular services and devices that
should take part in the assembly. There is also research in PalCom on adding task-
driven assembly construction which make use of resource and contingency
management to automatically adjust and reconfigure assemblies, see [Del42].

4.6 Scenarios
The different PalCom scenarios have allowed us to extract interesting requirements on
the assembly mechanism, as was detailed in [Del25]. We have also used parts of the
scenarios to illustrate different features of assemblies. In this deliverable, we illustrate
the Developer’s Browser by making use of the OnSite scenario, and, in particular, the
GeoTagger: an assembly of a camera, a gps, and a storage server, that together
accomplishes that all taken photos are tagged with gps coordinates and stored on the
storage server. The scenarios are discussed in more detail in [Del44].

PalCom External Report no 57 Deliverable 43 (2.6.2) page 8

5 The Developer’s Browser
The Developer’s browser is implemented as a plugin to the Eclipse environment
[Eclipse], and is thus implemented in Java, and designed to run on a computer with
screen, keyboard, and mouse. The software comprising the Developer’s Browser is
available in the PalCom cvs repository, and will become open-source software later in
the project. An installation and user’s manual is available [WN113]. The Developer’s
Browser is built on the components available in the PalCom Toolbox and is thus
compatible with existing PalCom software sharing the same codebase. This includes
the Mui browser for handheld devices, which supports browsing and simple
assemblies without scripts [Del25].

The Developer’s browser provides the following fundamental features: Browsing of
Devices and Services, Remote interaction with service, and Assembly editing. Each of
these features appear as a “View” or “Editor” in an Eclipse window.

5.1 Device and Service Browsing
The figure below shows a screenshot of the Browser view. It shows the discovered
devices and their services as a hierarchical clickable list.

• AxisCamera is a real PalCom device, a network camera that has been
reprogrammed to talk the PalCom discovery and service protocol [MaJa07].
The AxisCamera provides a service PictureService for taking pictures, also
shown in the hierarchical list.

• The browser presents itself as a device “PalCom Browser (this
device)”. It has a number of services including a Coordinate stuffer (a
discoverable component) and GeoTagger (an assembly). Other services on the
browser are various managers for middleware software that have been made
into services, and thereby made accessible over the network:

PalCom External Report no 57 Deliverable 43 (2.6.2) page 9

ResourceManager, AssemblyManager, etc.. These managers will be discussed
later in the deliverable.

• Sven’s GPS and Sven’s Storage Server are simulated devices that can be
shown on the screen as separate windows (not shown here). See section 6.5 for
a discussion on simulated devices.

The Browser view also shows the connections between services of the discovered
devices. For example, the PictureService of the AxisCamera is connected to the
GeoTagger on the browser device:

AxisCamera/PictureService --> Palcom Browser/GeoTagger

Similarly, the Coordinate stuffer, the storage server and the gps are also connected to
the GeoTagger (the assembly).

The user can also interactively create new connections directly in the Browser view,
thereby causing services to interact.

5.2 Remote interaction with a service
The figure below shows a screenshot of the Remote view that can be used for
interacting with a service on a remote device. The figure shows a remote view of the
PictureService on the AxisCamera. We can compare the remote view to an ordinary
remote controller for a TV. Similar to a remote controller, the remote view has
buttons for controlling the device, e.g., to make the camera take a picture:
“TakePicture”. In contrast to a remote controller, the remote view can also
receive messages from the device and present information in the view, in this case, an
image of the picture taken.

It is services of type control provider that can be displayed in a Remote view. The
user can bring up a new Remote View by selecting a control service in the Browser
View, and issuing a menu command open Remote view. The user interface of a remote
view, with buttons, etc., is automatically rendered from the service description. This

PalCom External Report no 57 Deliverable 43 (2.6.2) page 10

camera has only one control service, and we can therefore think of this view as a
remote view of the camera device itself. But it is also possible for a device to have
several control services that provide different interaction interfaces. For example, we
could imagine a camera with one control service for normal operation (taking
pictures, etc.), another control service for changing the settings of the camera (e.g., in
what precision to store pictures), and a third control service for upgrading the
software of the camera.

5.3 Assembly editing
The figure below shows a screenshot of the Assembly Editor, opened on the
GeoTagger assembly description. The description contains a list of devices, a list of
services on those devices (gps, photoDatabase, coordinateStuffer, and picture), a list
of connections between the services, and a script.

The script can have local Variables, and also an EventHandler that defines actions to
be taken for each message received from the connected services. Typical actions are
storing values in local variables, and sending messages to connected services.

In the example there are three when-clauses, taking care of three different messages
(all details not shown):

• When a gps coordinate arrives, it is stored in a local variable.
• When a picture arrives, it is sent on to the coordinator stuffer, along with the

current gps coordinate.
• When the stuffed image is received from the coordinate stuffer, it is sent on to

the photo database.

Internally, the assembly is represented as an abstract syntax tree (AST). The AST
provides a high-level object-oriented representation of the assembly that is suitable
for the assembly manager and other managers to operate on. This allows separation
between the internal abstract representation (the AST) and different ways of rendering
the assembly, e.g., as an XML text, or as visual or semi-visual renderings. In the
figure, the AST is rendered as a hierarchical list (called Tree editor). Here, the user

PalCom External Report no 57 Deliverable 43 (2.6.2) page 11

can edit the list by menu commands in order to add/delete/change descriptions of
devices, services, and connections, and to edit the assembly eventhandler, etc.

When creating an assembly, it is common to first experiment with the devices and
services by setting up remote views, and by adding explicit connections between
services in the Browser view. To create the assembly in an easy way, it is possible to
simply drag the relevant devices, services, and connections from the Browser view to
the Assembly Editor. By dragging over a connection, the relevant devices and
services are automatically added to the assembly.

The assembly can also be edited as XML text. This is done by selecting the XML
editor tab (details not shown). This can be useful during development and debugging
of the browser itself, but is of course less intuitive than the tree editor. When
switching to the XML editor, the AST is unparsed to XML text which the user can
edit. After editing, the XML text is parsed and the AST is updated.

5.4 Synthesized services
An assembly can be equipped with a synthesized service that allows the whole
assembly to be viewed as a single service. If the assembly has a synthesized service,
the user can open a remote view of the assembly (on the same or another browser
device). And the assembly can be combined into another assembly.

The figure below shows the definition of a synthesized service GeoTagger control
(the type of the service is control provider).

PalCom External Report no 57 Deliverable 43 (2.6.2) page 12

The synthesized service has three commands:

• An in-command “take photo [in]” for taking a photo. The in-command
corresponds to a message that the assembly can receive, and handle in the
eventhandler: “when take photo from this …”

• Two out-commands: “position [out]” for displaying the most recent
gps coordinate, and “image [out]” for displaying the most recently stuffed
image. The out-messages are sent using the syntax “invoke …” in the
eventhandler.

Synthesized services are useful for presenting an interface to an assembly as a whole,
as in this case of the GeoTagger. It allows the GeoTagger to be made part of another
assembly.

Synthesized services are also useful for adapting services to other interfaces. For
example, suppose we would like to replace the current gps in the GeoTagger with
another gps with another service interface. One possibility is of course to simply
change the GeoTagger assembly description and change the script to handle the new
interface. Another possibility is to keep the GeoTagger assembly, and rebind it from
the old gps to a new adaptor assembly that makes the new gps look like the old one,
by using a synthesized interface. An alternative to using an assembly to build the
adaptor is of course to implement an adaptor service, using a general-purpose
programming language. But building the adaptor using an assembly is much less
work, and can be done by an end user. Of course, if the service interface of the new
gps is very different from the old one, general-purpose programming might be
needed. For example, if one gps provides its coordinates according to one standard,
and the other gps according to another standard. The assembly scripting language is
not sufficiently powerful to program such a coordinate translation. An appealing
solution in this case is to implement a general coordinate translation service as a
discoverable component, and to use an assembly to combine the old gps and the
translation service into an adapted service.

5.5 Initial support for bindings
In [Del25] we identified the need for an assembly to be able to express different kinds
of bindings to its assembled services, allowing certain variations concerning which
actual devices and services to bind to. This area is one where WP6 on End-User
Composition interacts with WP5 on Resource and Contingency Management. In order
to establish an initial part of the PalCom architecture to support bindings, we have
implemented two very simple cases: 1) all assembled services are, by default,
optional, and 2) it is possible to specify several alternative services.

Optional services: Each service declared in the assembly is currently, by default,
optional. This means that if a particular service listed in the assembly description is
somehow not possible to connect to, the rest of the assembly will run according to the
script, but there will be no messages sent to/from the missing service.

For example, consider the GeoTagger assembly discussed earlier. If the photo
database service is not available, this is made visible in the Assembly Editor by
tagging the photo database with the text “Unknown Device”. But the assembly
will still run, and since the other services are available, the images will be tagged with
gps information by the coordinate stuffer, they will simply not be sent on to the photo
database.

PalCom External Report no 57 Deliverable 43 (2.6.2) page 13

Alternative services: It is possible to declare several alternative actual services, and to
specify their priorities. In the figure below, a new version of GeoTagger has been
created which has two alternative services for the gps: “gps: Alternative
declarations”. One on the normal device “GPS [priority 1]” and one on
the backup device “Backup GPS [priority 2]”. If the normal device is not
available, the assembly will automatically connect to the backup device, so called hot-
swapping, see [Del44]. See also [Del44] for ongoing work on more advanced ways of
selecting services based on resources.

5.6 Experiments with versioning and epidemic updates
In [Del25] the need for epidemic updates was identified, in order to support simple
updating of assemblies. We have now implemented initial experimental support for
such updates. The basic idea is that all services have version numbers and that
updated services can be sent automatically over the network whenever devices
connect. The version numbers are used both for identifying that two versions are the
same or different, and for representing a derivation graph of the versions, allowing
merging support between versions when needed.

In the experiment, the assembly manager is packaged as a service, with a subservice
Update that provides an interface to the epidemic update functionality. The assembly
manager on the browser device is connected to all assembly managers on all other
discovered devices. When the user edits and releases a new version of an assembly,
the new version is sent to all other connected assembly managers. When one of these
assembly managers is later connected to yet other assembly managers, the new
versions are passed on, hence the term epidemic updates.

PalCom External Report no 57 Deliverable 43 (2.6.2) page 14

The version of an assembly is shown in the browser view. Several versions of an
assembly can coexist and which ones are present is shown in the browser view. While
the assembly versions automatically spread to devices, it is under user control to
actually start using a new version. This initial implementation of epidemic updates is
to be viewed as a proof of concept implementation. Filtering and security mechanisms
need to be added to allow users to control the spreading of new versions.

PalCom External Report no 57 Deliverable 43 (2.6.2) page 15

6 Supporting middleware software
The implementation of the Developer’s Browser builds on a substantial amount of
underlying middleware software. In this section we report on some of this middleware
that is of particular importance to the browser. The middleware is developed in Pal-J,
and is useful for any device that runs a JVM or a PalVM, and not only for browsing
devices.

6.1 Service Framework
In order to easily build services and program devices, we have developed a software
package called the Service Framework. It contains an abstract class AbstractService
that captures what is common to all services, and specialized classes for providers and
customers, and for predefined service types such as control. It also contains an
abstract class AbstractDevice that models the device, and that keeps track of a the
device’s services and managers in a DeviceContext object.

A part of the service framework is shown in the figure below, including a simple
application of the framework: the implementation of an EchoDevice that has an
EchoService. The EchoService has an in-command for receiving a message with a
text parameter, and simply sends a corresponding out-message every time it receives
an incoming message. The example is further described in [WN112].

6.2 Initial Resource Manager
The Resource Manager is responsible for providing assemblies with resources such as
suitable devices, services, and connections. An initial very simple Resource Manager
has been implemented that supports the current requirements from the Assembly
Manager, including handling of alternative services. This initial Resource Manager
will be replaced by a more advanced Resource manager and a Contingency Manager
that are being implemented within WP 5, see [Del42]. The current version supplies
assemblies with connections, and informs the relevant assemblies when a connection
is broken. The Resource Manager is implemented as a subclass of ControlProvider in

PalCom External Report no 57 Deliverable 43 (2.6.2) page 16

the Service Framework, making itself a service that can be accessed via a Remote
view or another assembly. By making the Resource Manager a service, smaller
devices do not need to have their own resource manager, even if they run assemblies,
but can rely on a nearby device with a Resource Manager Service.

6.3 The Assembly Manager
The Assembly Manager is responsible for storing, loading and running assemblies. It
is of course used by the Developer’s Browser, but it can also be used on its own, on a
smaller device, e.g., a camera or a gps, provided that the device provides a JVM or a
PalVM. To support this latter case, the Assembly Manager is packaged as a service (it
is implemented as a subclass to the ControlProvider in the Service Framework). The
commands in the Assembly Manager service allows assemblies to be loaded and run,
and also to be edited, e.g., to change individual connections. The packaging of the
Assembly Manager as a service allows it to be controlled by other services and also to
be controlled remotely from other devices. For example, the user can bring up a
Remote view of the Assembly Manager of a small device and load and run assemblies
on the device.
6.3.1 Representation of assemblies
An assembly description is stored as an XML string, currently in a file in the local file
system on the device. This use of files will soon be replaced by storing the XML
strings in the Storage Component that is currently developed in WP 9 [Del44]. The
Storage Component will furthermore be made into a ControlProvider service. This
will allow small devices to store their assemblies on other devices. The Storage
Component Service will also be useful for assemblies since an assembly can use the
Storage service for storing data persistently.

Internally, in the Assembly Manager, the assembly is represented as an abstract
syntax tree, an AST. The abstract grammar of the assembly is shown in appendix A.
The main parts of an assembly are the following:

• Devices – references to particular devices
• Services – references to particular services on those devices
• Connections – description of how the services connect to each other and to the

assembly.
• Script – description of local state (variables) and of what actions should be

taken when the assembly receives a message from one of its connected
services (eventhandler).

• Synthesized service – a service description for the assembly, allowing the
assembly to be viewed as an ordinary service, e.g., to let another assembly
interact with it.

6.3.2 Loading and running assemblies
The assembly manager can be asked to load and run an assembly. When given an
XML representation of an assembly, it performs the following actions:

• Parse the XML string into an AST
• Find the relevant services and devices described in the AST (by asking the

Resource Manager)
• Set up the connections between the services (also via the Resource Manager)
• Start an interpreter for the assembly script. The interpreter is essentially an

event-based loop that waits for messages on the incoming connections and
acts according to the script logic.

PalCom External Report no 57 Deliverable 43 (2.6.2) page 17

The Assembly Manager can also be asked to stop and unload the assembly. The
interpreter will then be stopped, and the connections closed.

6.4 Discoverable Component Manager
The Discoverable Component Manager is responsible for storing and loading
discoverable components, i.e., services that are not tied to the device hardware, and
which can therefore be copied between devices. When loading a discoverable
component it starts to run as a service on the device. The Discoverable Component
Manager is implemented as a service (a subclass to ControlProvider in the Service
Framework), with commands for loading a service, and for starting and stopping it.
This is used by the Assembly Manager: if an assembly requires a discoverable
component that is currently not running, the Assembly Manager will connect to the
Discoverable Component Manager and ask it to start the component. Furthermore, the
use of the Discoverable Component Manager as a service opens for future support for
copying Discoverable Components between devices.

6.5 Simulated devices
In a development situation is it valuable to be able to simulate devices, i.e., to run
their services on a general-purpose computer rather than on the device itself. This is
useful in order to prototype the functionality that will later be built for real in the
actual device: building a simulated device is much less work than building an actual
device. In order to support this, we have developed a graphical user interface
framework for easily developing the user interface of a simulated device. This has
been used for simulating a number of devices, e.g., cameras, gps-devices, etc. When
running simulated devices they run as separate processes or threads, typically on a
laptop. This allows easy debugging in the development situation, as well as more
realistic simulations of scenarios, if the simulated devices are placed on different
physical laptops. This piece of supporting software needs full Java to run, and is part
of the Utilities layer of the PalCom toolbox infrastructure, see [Del39].

PalCom External Report no 57 Deliverable 43 (2.6.2) page 18

7 Interaction with other workpackages
The work in WP6 has been carried out in close cooperation with the other
workpackages on specific design: The middleware software has been implemented in
Pal-J, using the tools and software developed in WP3 (Runtime Environment) and
WP4 (Communication and Components), and providing feedback and requirements
on those tools and libraries. There have been design meetings and discussions with
WP5 (Resource and Contingency Management) resulting in a design and
implementation of the initial resource manager.

The work in WP6 has also benefited much from the work in the application
prototypes workpackages, WP7-WP12. At the WP5-6 workshop held in Lund 6-7/11
there were representatives from all these workpackages. The coordinated work has
resulted in both identifying requirements needed for mechanisms in the assemblies,
and for experiments with implementing assemblies for partial scenarios. A number of
experiments have been made within WP6. Feedback from these experiments is used
continually to improve both the concepts and the software. The most extensive
experiments so far have been with the GeoTagger and the Tiles scenarios (parts of
WP7 and WP11, respectively).

GeoTagger is a part of the OnSite scenario, developed in WP 7. Experiments with
programming this scenario started already with the MUI browser for handhelds, and
has been the most important driving scenario for development of the current assembly
concept. The GeoTagger assembly combines a camera, a gps device and a storage
device in order to automatically store gps-tagged images when a landscape architect
takes pictures with a camera. This scenario has been successfully implemented and
run with the assembly mechanism in the Developer’s Browser.

The work on Tiles is part of the Active Surfaces scenario developed in WP11 on Care
Community. Based on the assembly concept, a solution to the Tiles games was
developed in WP11 [Gr+06], and a simulated implementation using the Developer’s
Browser has been developed as part of WP6 [BrMaSv07]. See also [Del44].

A first internal release of the software was done in November 2006, and besides
WP11, other workpackages are now starting to use the software, in particular WP9 for
implementing a simulated prototype of the Stone, and WP5 for implementing a more
advanced Resource Manager.

PalCom External Report no 57 Deliverable 43 (2.6.2) page 19

8 Conclusion
This deliverable reports on the software support for assemblies. An interactive
browser has been implemented which supports browsing of devices and services,
remote interaction with services, and support for editing and running assemblies. The
main functionality for managing and running assemblies can also be run on smaller
devices without an interactive browser.

The PalCom application prototypes have been used for identifying requirements on
the assembly mechanism, and major and important parts of these requirements have
been implemented and tested for partial scenarios from the prototypes, most notably
GeoTagger and Tiles. Important assembly mechanisms that have been implemented
include connections that assemble services, scripts with variables and eventhandlers,
and synthesized services for assemblies.

The work is still preliminary in that there are many aspects of assemblies that need
further development, both concerning the concepts and the software. Yet, the main
design is stable and working, and we are in a situation where refined ideas can be
implemented and incrementally improve the working tool set.

The technical work reported here can be put into perspective by relating to the
PalCom challenges (treated in more depth in [Del39]). It is interesting to see that the
work contributes to solving all of these challenges, while of course it is far from
providing a complete solution to any of these rich concepts:

An end-user can construct an ad-hoc application by combining services
(construction). The combination is represented as an assembly description that can be
inspected (visibility) and taken apart and changed (deconstruction). The inner
structure of the assembly can also be ignored, and the assembly used as a higher-level
service by constructing a synthesized service (invisibility). The assembly remembers
its connections and automatically connects its assembled services (stability). But it is
also possible to change the combination of services, e.g., in order to cope with
changes in the environment (change). The assembly concept is simple to understand
(understandability), yet has the potential to scale because of its hierarchical nature
(scalability). Assemblies support combination of heterogeneous devices and services,
they only need to support a simple and very general service protocol that is both
domain independent and platform independent (heterogeneity). At the same time,
there is coherence due to the underlying common service protocol (coherence). There
is certain very limited initial support for autonomy in that by defining alternative
service bindings, an assembly can automatically switch an assembled service if the
highest priority service fails (autonomy). But the limits for this autonomous behavior
is completely under user control and explicitly declared in the assembly descriptor
(user control).

Future work will focus on refining the assembly concept and tools in order to improve
the support for the PalCom challenges. In particular, we will implement additional
partial scenarios and simultaneously update the assembly language and browser
capabilities to support their needs. The tools and supporting middleware will be
provided as open-source software. Work will also continue on visual browsers for
ordinary end users and small browsers for devices with limited interaction
capabilities.

PalCom External Report no 57 Deliverable 43 (2.6.2) page 20

9 References
[Del25] PalCom External Report 34: Deliverable 25 (2.6.1): End-user Composition

Tool. Technical report, PalCom Project IST-002057, October 2005.
http://www.ist-palcom.org/publications/review2/deliverables/Deliverable-25-
[2.6.1]-end-user-composition-tool.pdf

[Del39] PalCom External Report 50: Deliverable 39 (2.2.2): Open architecture.

Technical report, PalCom Project IST-002057, December 2006.
http://www.ist-palcom.org/publications/review3/deliverables/Deliverable-39-
[2.2.2]-open-architecture.pdf

[Del41] PalCom External Report 55: Deliverable 41 (2.4.3): Components &

communication. Technical report, PalCom Project IST-002057, December
2006.
http://www.ist-palcom.org/publications/review3/deliverables/Deliverable-41-
[2.4.3]-components-communication.pdf

[Del44] PalCom External Report 58: Deliverable 44 (2.7.2): Prototypes status after

Year 3. Technical report, PalCom Project IST-002057, January 2007.
http://www.ist-palcom.org/publications/review3/deliverables/Deliverable-44-
[2.7.2]-prototype-status-after-year3.pdf

[WN112] Palpable Working Note #112. Service framework. David Svensson, January
2007.

[WN113] Palcom Working Note #113. Eclipse-based browser and assembly editor:
User’s guide. Sven Gestegård Robertz, January 2007.

[Eclipse] www.eclipse.org

[BrMaSv07] Jeppe Brønsted, Boris Magnusson, David Svensson, The Tiles Simulator,
Dept. of Computer Science, Aarhus University, 2007, In Preparation.

[Gr+06] Erik Grönvall, Alessandro Pollini, Alessia Rullo, and David Svensson.
Designing game logics for dynamic Active Surfaces. In Proceedings of MUIA
'06, Workshop on Mobile & Ubiquitous Information Access, Espoo, Finland,
September 2006.

[MaJa07] Boel Mattsson and Brice Jaglin. Implementing the PalCom protocol in an Axis
network camera. Master’s thesis, Dept. of Computer Science, Lund
University, January 2007.

[SvMaHe05] David Svensson, Boris Magnusson, and Görel Hedin. Composing ad-hoc
applications on ad-hoc networks using MUI. In Proceedings of
Net.ObjectDays 2005, 6th Annual International Conference on Object-
Oriented and Internet-based Technologies, Concepts, and Applications for a
Networked World, pages 153-164, Erfurt, Germany, September 2005

[SvHeMa06] David Svensson, Görel Hedin, and Boris Magnusson. Pervasive applications
through scripted assemblies of services. In Proceedings of SEPS 2006, 1st
International Workshop on Software Engineering of Pervasive Services, Lyon,
France, June 2006.

[Sv06] David Svensson, Support for Ad-Hoc Applications in Ubiquitous Computing.
Licentiate thesis, Lund University, November 2006.

PalCom External Report no 57 Deliverable 43 (2.6.2) page 21

10 Appendix. Abstract grammar for assemblies
abstract InfoRoot : Info ::= <Format:String> <Name:String> <Version:String>;

abstract Decl : AbstractXMLRepresentable ::=;

//Add device ID and time stamp here
AssemblyDescriptor: InfoRoot ::= AssemblyInfo*;

AssemblyInfo: InfoRoot ::= <Released:boolean> Devices:DeviceDeclList
 Services:ServiceDeclList Connections:ConnectionDeclList
 [EventHandlerScript] [ServiceDescription];

DeviceDeclList : Decl ::= DeviceDecl*;
ServiceDeclList : Decl ::= ServiceDecl*;
ConnectionDeclList: Decl ::= ConnectionDecl*;

DeviceDecl : Decl ::= Name:Identifier URN;

ServiceDecl : Decl ::= LocalName:Identifier Decl:AbstractServiceDecl;
abstract AbstractServiceDecl : Decl ::= ;
SingleServiceDecl : AbstractServiceDecl ::=
 ServiceName:Identifier DeviceUse <URNSuffix:String>;
AltServiceDeclList : AbstractServiceDecl ::= ServiceDecl:AltServiceDecl*;
AltServiceDecl : SingleServiceDecl ::= <Prio:String>;

ConnectionDecl : Decl ::= Provider:ServiceExp Customer:ServiceExp;

Identifier : Decl ::= <ID:String>;

DeviceUse : Decl ::= Identifier;

abstract ServiceExp : Decl;

ServiceUse: ServiceExp ::= Identifier;
ThisService : ServiceExp;

EventHandlerClause*;
EventHandlerScript : Decl ::= Variables:VariableList EventHandlers:EventHandlerList;

VariableList:Decl ::= VariableDecl*;
EventHandlerList:Decl ::= EventHandlerClause*;

VariableDecl : Decl ::= VariableType Identifier;
abstract VariableType;
MimeType: VariableType ::= <TypeName:String>;

EventHandlerClause : Decl ::= <CommandName:String> ServiceExp [CommandInfo] Action*;

abstract Action : Decl ::= ;
AssignAction : Action ::= VariableUse ParamUse;
abstract ActionWithParams : Action ::= <Command:String> ParamValue:Use*;
SendMessageAction : ActionWithParams ::= ServiceExp;
InvokeAction : ActionWithParams ::= ;

abstract Use : Decl ::= ;
VariableUse : Use ::= <Name:String>;
ParamUse : Use ::= <Name:String>;
ConstantUse : Use ::= <Constant:String>;
MissingUse : Use ;

